收藏文章 楼主
初创公司“Modular”可以绕过CUDA生态了?
网友【AI来了】 2023-11-18 11:39:14 分享在【时代发展的印记】版块    1    8

网友分享在meiguo.com上的图片

天下AI厂商苦CUDA久矣。不过,还真有人打算重新整合AI生态系统,给这堵“铁墙”凿出一道裂缝来。

两个熟悉TensorFlow和PyTorch的人站了出来,成立公司打算来一个“世界最快AI执行引擎”,提供兼容所有模型的解决方案。

这家公司叫Modular,由Chris Lattner和Tim Davis创立于2022年1月,是一家创建开发和优化人工智能系统平台的初创公司。

最新一轮1亿美元融资发生在2023年8月24日,由General Catalyst领投,SV Angel、Google Ventures、Greylock 和 Factory 参投。截至目前,公司共融资2轮,总金额1.3亿美元。据The Information报道,Modular融后估值约为6亿美元。

网友分享在meiguo.com上的图片

Lattner表示,这笔资金将用于改进核心产品,加强硬件支持和 Modular编程语言的扩展。

11月7日,Mojo v0.5.0发布,这个用emoji“火”做logo的新语言,定下“所有AI开发者适用”的标签。

公司目前有70余名员工,规模不大却人才济济。上周,英伟达前工程总监Mostafa Hagog——开发了cuDNN 和CUTLASS等深度学习库的大佬刚刚入职。

【01】

性能达Python的6.8万倍

Modular在讲述远景的文章中,突出了两个问题:

Isn’t Big Tech going to solve the world’s AI problem for us?

(大型科技公司能否解决世界的人工智能问题?)

If not Big Tech, who will solve this for the world?

(如果不是,那谁会为世界解决这个问题?)

目前,从AIGC产业链条来看,上游链条的AI基础设施和服务器供应商、底层的AI芯片供应商,中游的算法模型、基础框架公司随着全球AI热潮遍地开花。各个芯片巨头提供不同的GPU,对应自家工具库,训练自己的编程模型。

Modular工程师补充:“TensorFlow和PyTorch这样的人工智能框架有一个用于模型开发的Python API,背后其实是C++语言调用像CUDA这样的硬件内核,它们区分了模型系统和硬件代码,工程师很难跨越层级。各个硬件公司的GPU、CPU、TPU又更新不断。实际上,AI生态系统正在变得支离破碎。”

对此,Modular想做到两件事:简化AI基础设施,兼容模型降低成本。Modular在5月的发布会,证实他们正在完成构想。

他们开发了一种面向AI开发者的新型编程语言Mojo,与Python、C、C++和CUDA开发语言进行了集成,开发人员用一种语言就能编写所有相关开发内容。它突破Python性能极限,在更高性能和特殊硬件上表现理想,发挥CPU潜能并良好支持GPU和ASIC等外部加速器,提供与C++和CUDA相当的卓越性能。

网友分享在meiguo.com上的图片

这种语言能对接完整Python生态系统,利用高性能库,例如开发者能将Numpy和Mojo代码无缝混合。“Mojo不止于此,您可以深入到实现low-level numeric algorithms(低级数值算法),无需任何开销。”

此外,Mojo能升级AI的工作负载。Modular团队最新公布表示,Mojo能一举将性能提升达Python的6.8万倍。

Modular还提供一种AI开发引擎。Lattner称,它让开发者依赖单一执行引擎,节省算力成本,减少硬件延迟,支持无缝模型迁移。

网友评论:“这看起来像游戏规则的改变者。”

【02】

技术大拿和成功创业者的互补组合

Modular的产品在推广上还需要经过众多开发者的考验。Python是各个大厂招聘工程师要求的主流语言,为什么要费劲去学习一门新的编程语言Mojo呢?

由于为Modular背书的两个创始人,一个是编译界的“迈克尔·乔丹”Chris Lattner,一个是连续创业者Tim Davis。所以,在开发者眼里:值得一试。

网友分享在meiguo.com上的图片
Modular 联合创始人 Chris Lattner 和 Tim Davis

Chris Lattner是LLVM(苹果官方支持的编译器)、Swift(为苹果生态系统提供支持的程序设计语言)之父。他在22岁时将还是硕士论文项目的LLVM发展成为开源社区,领导过Apple、Tesla、Google、SiFive和Modular的项目,开发了Swift、LLVM、Clang、MLIR、CIRCT、TPU和Mojo。

2005年6月,从伊利诺伊大学博士毕业后,Lattner因开发LLVM已经小有名气,进入了苹果公司做编译器项目。他将LLVM运行时的编译架在OpenGL栈上。Lattner回忆,当时一位经验丰富的同事劝说他:“GCC(苹果当时的编译器)已经存在20年的时间,没有什么能取代,你在浪费时间。”

事实上,苹果招揽Lattner是一个尝试。苹果苦于GCC庞大而笨重的系统,想推出64位Mac,从 PowerPC处理器转向英特尔,LLVM是图形领域即时编译器的解决方案。几年后,2009年苹果发布的Mac OS X10.6 Snow Leopard完全得益于LLVM技术,这一版本的雪豹系统有OpenCL图形处理等新特性。苹果结合Lattner开发的前端Clang,以求完全替代GCC。在苹果,LLVM取得了快速发展。

2010年,Lattner获得Programming Languages Software Award(ACM颁发的程序设计语言软件奖,编程语言界的“奥斯卡”)。当年7月,Lattner开始着手Swift编程语言的设计,该项目可用来为iOS、Mac等产品开发APP,一度是苹果开发者工具部门的重点。

网友分享在meiguo.com上的图片

2017年,他被谷歌吸引去帮助开发TPU,从事TensorFlow和机器学习IR及其他编译器相关工作,而且还开源了Swift for TensorFlow,此举直接将人工智能和深度学习的开发者好感拉满。

在谷歌,拥有传奇经历的Lattner遇到了Modular的另一位创始人——半路出家学习编程还当上谷歌高级产品经理的Tim Davis。

Tim曾与许多PM和大型工程团队一起在 Google Brain中开发TensorFlow。他是谷歌机器学习基础设施团队的产品负责人,负责Google ML API(Tensorflow/JAX),编译器(XLA & MLIR)和服务器(CPU/TPU/GPU)以及运行在设备上ML运行时基础设施的产品。

Tim在自我介绍时直言:“我本质上是一名企业家”。

他在2013年创立的Fluc(食品配送服务),相当于在硅谷做起了“美食外卖”。Tim表示,他使Fluc从天使投资人和VC处筹集了资金,并成长为年销售额超过1000万美元的公司。在与谷歌完成Fluc收购流程后,Tim加入了其团队,并在2017年前往斯坦福大学的SCPD(专业发展中心)学习了计算机,2020年成为Google Brain和TensorFlow的高级产品经理。

学一年编程就能在谷歌直接晋升算得上是“开挂”。但实际上,Tim在编码方面的经验并不仅限于斯坦福大学的一年学习。孩童时期,一台Commodore 64C是他接触编程BASIC语言的开始,在高中和大学期间在一直学习 Javascript和VBA,并决定使用Python进行多数编程,创业时他还为自己的公司编写了代码。

Modular成立后,Lattner非常清楚公司要解决的是一个抽象的技术问题。初创公司没有大厂光环,要从大型科技公司聘请高技术专家,筹集资金运维相当困难。Tim是一个与他非常互补的人,也让他感受到团队各司其职的魅力。Tim主要负责产品和业务工作,热情地和不同的公司进行交流。Lattner会协助团队招聘,亲自帮助构建初始工程。

当前,Modular召集了来自 PyTorch、TVM、英特尔 OpenVINO 、Onyx Runtime的成员,Lattner称他们的员工基本接触过业界所有编译器。

【03】

绕过CUDA重建AI生态系统

“我们看到了AI领域客户的痛点,他们构建和部署的很多东西都是一团乱麻”。

Tim和Lattner认为,人工智能的发展受阻于基础设施碎片化,集成使用太过昂贵,他们创立Modular的愿景便是消除大规模构建和维护人工智能系统的复杂性。

网友分享在meiguo.com上的图片

AI大模型训练、存储、推理需高昂费用,根据不同模型和数据集大小,训练费用通常占总费用的80%。

目前各大公司训练的大模型需要解决大量参数、结构复杂、反复计算、多模态等问题,依靠英伟达的GPU+NVlink+CUDA生态便能解决全部需求。要进入AI算力市场,英伟达的CUDA几乎是绕不开的一堵高墙。老黄从市场赚了多少钱,完全可以从英伟达1万亿美元的市值看出来。据报道,英伟达性能最好的AI芯片已经售罄(直到2024年)。

网友分享在meiguo.com上的图片

Modular的愿景就是在绕过英伟达的CUDA重建生态系统。

在当前情形下,Modular能否实现弯道超车?

Modular降低复杂性的目标直击要害。Lattner在Latent Space播客中提到,构建TensorFlow系统的人没有解决软硬件边界问题。一旦新硬件推出,都会让计算复杂度不断上升,开发人员必须重写上千个 Kernel(GPU上由CUDA运行的函数),进入硬件的门槛会越来越高。许多人工智能系统面临挑战:找不到能编写 Kernel的专家。

计算复杂性之外,芯片短缺也是障碍之一。Lattner在Techcrunch的采访中指出:“人工智能的需求正在迅速接近可持续性的极限——这使得任何减少计算需求的技术都变得可取。”事实如此,今年下半年,微软、OpenAI等公司都表示正在采取必要措施缓解用于AI任务的GPU短缺问题。

目前,从Modular的博客文章可以看出,公司的产品加速针对的都是CPU而非GPU。“现在的很多推理是在CPU上完成的,我们决定从CPU开始先改进架构,CPU容易使用,而且不会买不到。当然我们也在弄GPU,很快就会推出。”在Lattner的计划中,基于第一性原理从底层开始先让CPU跑起来,Modular要构建通用的编译器,走通用到垂直的路更加容易。

据华尔街日报报道,现如今的人工智能模型已经比旧的大10倍到100倍,高通技术公司高管Ziad Asghar称,用例数量和用户数量也呈爆炸式增长。有限的计算能力、复杂的基础设施、巨额的硬件投资、软硬件系统的孤岛等情况客观存在,英伟达竖起的城墙牢不可破。

时间仿佛又回到了2005年,经验丰富的工程师问新来的Lattner,现有的系统已经很稳定,为什么要浪费时间去从头做新的?

Lattner的回答是:“这很有趣,不是吗?”

撰文:李霜霜

出处:微信公众号 @快鲤鱼

meiguo.com 发布人签名/座右铭这家伙浪费了“黄金广告位”,啥也没签!
大家都在看
回复/评论列表
默认   热门   正序   倒序
meiguo.com 创始人

emotion

8   2023-11-18 11:39:14  回复

回复/评论:初创公司“Modular”可以绕过CUDA生态了?

暂无用户组 升级
退出
等级:0级
美果:
美过
精华推荐
  1. 完整曝光:美国前总统【川普(特朗普)】遭遇刺客的前前后后
  2. 坐火车“游览全美国”的14条线路盘点
  3. 五星红旗在月球背面升起!阿波罗登月遭遇再度质疑?
  4. 回归之王:唐纳德·特朗普“赢得又大又快”
  5. 在加州海滩捡蛤蜊,72个罚9万美元!
  6. 美国人口流动数据剖析:年轻富有群体搬家去哪儿了?
  7. 人身安全“没保障”的原因?赴美留学的趋势遇冷
  8. 移民故事:入赘美国的河南保安【蔡小华】现状
  9. 佛罗里达遭遇的飓风可以影响到美国大选结果?
  10. 号外:伊隆·马斯克的第11个孩子出生了
  11. 中国防长:“谁胆敢把台湾从中国分裂出去,必将粉身碎骨、自取灭亡”
  12. 世上只有男人和女人!~ 特朗普总统:上帝只创造了两种性别,无其它!
  13. “走线”路不通了?拜登政府颁布最严边境令?
  14. 福建人在纽约:有多少人通过走线(偷渡)到纽约的?
  15. 美国房市降温?待售房屋开始下调要价!
  16. 新罕布什尔州的一位女子在领取彩金的现场捐出5000万美元
  17. 关于EVUS的填写心得和常见问题
  18. 宁愿混居美国,华人姑娘袒露了不愿回国的真相!
  19. 伊隆·马斯克在“We, Robot”三连发:Cybercab、Robovan及Optimus!
  20. 加州公司的市值盘点 top10
  21. 巨型公司:市值已超3.5万亿美元,约合18个阿里巴巴!
  22. 关于美国大学的学费开支
  23. 中国人即将登月!
  24. 能决定2024选举结果?特朗普即将放大招了!
  25. 《黑神话:悟空》发行仅3小时后竟然就这样了!
  26. 拆解:太精致啦!到底是苹果M4 Mac mini牛?还是华强北更牛?
  27. 深入剖析:性在人类交往中的作用
  28. 漂亮国再次遣返中国移民,这批有131人!
  29. 从旧金山到洛杉矶,美国西部旅行的完整实录
  30. “极右翼”控制移民政策!特朗普政府的内阁名单曝光
  31. 苹果公司在2024秋季的新品发布会(懒人速览)
  32. 悲惨回顾:美国历史上的十大枪击案盘点
  33. 关于美国的社保(全面解读)
  34. 《潜望》对话李开复:如果美国形成AGI霸权,中国咋办?
  35. 珠海航展:轰20的先行版遭遇美国酸溜溜了
  36. 碧昂斯和巨石强森这样的美国巨星在大选中,如何站队的?

美国动态 美果转盘 美果商店

Your IP: 3.12.34.192, 2024-11-24 08:23:36

Processed in 0.45834 second(s)

头像

用户名:

粉丝数:

签名:

资料 关注 好友 消息
已有0次打赏
(8) 分享
分享
取消