收藏文章 楼主
颠覆认知的几个科学理论,竟然有科学家证实了!
网友【发现了】 2021-01-24 03:57:24 分享在【时代发展的印记】版块    1    3

从人类诞生的那一天起,我们就开始一步一步地认识这个世界。在古人眼里,这个世界充满了各种魔法和恐惧。由于对世界上的各种事物缺乏认知,古人对很多自然现象充满了恐惧和敬畏,所以有很多神话的传说,认为这些自然现象和规律是上帝在背后操纵的。

随着人类文明的发展,我们进入了科学的殿堂。在科学的世界里,我们开始了解世界,了解世界上的一切,了解所有的规律,我们可以在科学知识的海洋里找到答案。

进入科学时代后,人类提出了许多科学理论,其中一些得到了我们的证实,而另一些仍在探索中。其中有五种科学理论已经被科学家明确证实,但很多人难以接受。为什么?我们先来了解一下这五个让人难以接受的科学真理。

网友分享在meiguo.com上的图片

1. 量子叠加态

众所周知,世界包括宏观和微观,我们看到的世界是宏观的。而宏观的背后,有一个我们看不到的微观世界。上个世纪,科学家发现了微观世界的存在,提出了量子力学理论。

量子力学是研究和探索微观世界的关键。当科学家进入微观领域时,他们发现了许多颠覆我们认知的神奇理论。量子力学中的许多科学现象理论与宏观理论完全不同,甚至颠覆宏观理论,如叠加态。

叠加态是指对一个量子系统的几个量子态进行归一化和线性组合得到的状态。简单来说,在宏观世界中不能同时存在的几种状态,在量子力学中可以同时叠加。比如上下左右前后生死等等。,这些完全相反的状态只能同时存在,但在量子力学中,它们可以同时存在。

网友分享在meiguo.com上的图片

有一个关于叠加态的著名实验,就是双缝干涉实验。我相信每个朋友在高中的时候都做过这个实验。在实验中,这种电子干涉条纹留在两个狭缝上。一旦我们用特殊的仪器观察电子,干涉条纹就会消失。对此的解释是这样的:我们不观察的时候,电子是波动的,所以可以分散,留下条纹;一旦我们开始观察,一个光子击中这个电子,这个电子就有了一个确定的位置,表现出粒子性质。

一个光子可以与自身发生干涉,产生两条干涉条纹。这是一个非常著名的叠加态实验。通过实验,我们证明了量子叠加态的真实性。然而这个结果很多人很难接受。它告诉我们,在量子世界中,生与死可以同时存在,颠覆了我们的认知。

网友分享在meiguo.com上的图片

2. 量子隧穿效应

量子叠加态让我们看到了微观世界的神奇和神秘,而在量子力学中,还有一种现象也是人们无法接受的,那就是量子隧穿效应。

在量子世界中,微观粒子可以穿透或穿过其他物体。这种神奇的现象只发生在量子力学中,而在经典力学中是不可能的。这个科学理论告诉我们,理论上来说,我们也可以穿墙而过。

要知道宏观世界的物质也是由粒子组成的,比如人体就是由大量微观粒子组成的。如果粒子可以自由穿过物体,那么由粒子组成的人体也应该可以穿过墙壁。理论上是这样,但在宏观世界,这种现象从来没有发生过。

网友分享在meiguo.com上的图片

这个结果让很多人感到迷茫。既然量子力学中存在隧穿效应,粒子可以穿过物体,为什么粒子组成的物体不能穿墙?科学家很难对这个谜给出明确的答案。我们现在知道的是,物体穿墙的概率在宏观世界中并不是零。

也就是说,理论上我们是有可能成功翻墙的,但是概率太小,不可小觑。所以就算你千百次尝试穿墙而过,也不太可能成功。它只是量子力学中一个正确的科学理论,但在真实的宏观世界中并不十分正确。

3. 永恒的运动

从正常的角度来看,这个世界没有永恒。但牛顿第一定律告诉我们,理论上存在永恒运动。众所周知,运动的物体需要外力驱动,只有外力的注入,物体才能带着能量向前运动。

网友分享在meiguo.com上的图片

汽车的动力来自它的发动机,把蓝色的球向上抛的动力来自我们的手臂。这就是外力驱动的运动状态。如果一个运动物体不受外力驱动,根据牛顿第一定律,它将永远匀速直线运动。

当一个物体不受任何外力作用时,它将永远处于静止状态,不会运动。举个例子,一个苹果在没有外力的情况下,会一直站在桌子上不动。

牛顿第一定律允许这种永恒静止和永恒运动状态的存在,这也是很多人研究永动机的理论基础。但在现实中,永恒的运动是不存在的,因为在宏观世界中,粒子不可能是绝对静止的,它们总是在运动的。

网友分享在meiguo.com上的图片

静止的苹果,其内部粒子仍在不断运动,并不是绝对静止的。如果粒子在运动,那么由粒子组成的苹果也应该在运动,但是我们看到的还是在桌子上。这种矛盾的情况很多人很难接受。

4. 光速不变理论

众所周知,在爱因斯坦的狭义相对论中,宇宙中最快的速度就是光速。如果不考虑宇宙本身的扭曲和膨胀,光速绝对是宇宙最快的速度。

光速还有一个特点,就是永恒。无论什么样的运动状态和方向,光速总是保护着每秒30万公里,不多不少。在很多人眼里,如果我们乘坐的飞机的速度达到光速的30%,那么在这个速度的过程中,飞船会发出一个光,那么这个光的速度应该是光速加上光速的30%。

网友分享在meiguo.com上的图片

但是,现实中,这样的事情是不存在的。飞船以光速的30%发射的一束光的速度仍然是每秒30万公里,不会超过光速。在过去的一百年里,科学家们做了许多关于光速的实验,最终的结果证明光速是绝对恒星的,不受任何参考物体的改变。

5. Muppeba效应

在相同的质量和冷却环境下,与冷却环境直接接触的温度稍高的分子会比温度稍低的分子下降得更快。如果冷却环境能始终保持一致的冷却能力,高温液体会先降到冷却环境温度,如果温度低于液体的冰点,高温液体会先结冰。

举个例子吧。当一杯热水和一杯冷水同时放入冰箱时,哪一个会先结冰?在我们的日常思维中,冷水应该是冷冻的最佳选择,那么这是绝对的吗?科学家用大量的实验告诉我们,结果并不是绝对的,有可能热水比冷水结冰快。

网友分享在meiguo.com上的图片

虽然科学家通过实验证明了Muppeba效应,但很多人很难接受。科学家们对这种异常现象做了很多解释,但这些解释很难让人信服。目前还没有确定的答案。。当然,穆帕巴效应只是现象的一部分。大多数情况下,冷水比热水先结冰。

从以上五种科学理论可以看出,人类对世界了解甚少。虽然我们已经进入了科学时代,掌握了很多科学理论,但是我们对科学的认知还是很低的。许多科学现象仍然迷惑和颠覆着我们。只有不断努力发展科学,我们才能获得更多的科学理论,获得更多的物质和世界知识。

出处:头条号 @科学探索007

meiguo.com 发布人签名/座右铭这家伙浪费了“黄金广告位”,啥也没签!
大家都在看
楼主新近贴
回复/评论列表
默认   热门   正序   倒序
meiguo.com 创始人

emotion

3   2021-01-24 03:57:24  回复

回复/评论:颠覆认知的几个科学理论,竟然有科学家证实了!

暂无用户组 升级
退出
等级:0级
美果:
美过
精华推荐
  1. 巨型公司:市值已超3.5万亿美元,约合18个阿里巴巴!
  2. 回归之王:唐纳德·特朗普“赢得又大又快”
  3. 伊隆·马斯克在“We, Robot”三连发:Cybercab、Robovan及Optimus!
  4. “走线”路不通了?拜登政府颁布最严边境令?
  5. 《潜望》对话李开复:如果美国形成AGI霸权,中国咋办?
  6. 世上只有男人和女人!~ 特朗普总统:上帝只创造了两种性别,无其它!
  7. 从旧金山到洛杉矶,美国西部旅行的完整实录
  8. 完整曝光:美国前总统【川普(特朗普)】遭遇刺客的前前后后
  9. “极右翼”控制移民政策!特朗普政府的内阁名单曝光
  10. 能决定2024选举结果?特朗普即将放大招了!
  11. 福建人在纽约:有多少人通过走线(偷渡)到纽约的?
  12. 珠海航展:轰20的先行版遭遇美国酸溜溜了
  13. 坐火车“游览全美国”的14条线路盘点
  14. 关于美国大学的学费开支
  15. 中国防长:“谁胆敢把台湾从中国分裂出去,必将粉身碎骨、自取灭亡”
  16. 新罕布什尔州的一位女子在领取彩金的现场捐出5000万美元
  17. 《黑神话:悟空》发行仅3小时后竟然就这样了!
  18. 在加州海滩捡蛤蜊,72个罚9万美元!
  19. 碧昂斯和巨石强森这样的美国巨星在大选中,如何站队的?
  20. 佛罗里达遭遇的飓风可以影响到美国大选结果?
  21. 苹果公司在2024秋季的新品发布会(懒人速览)
  22. 中国人即将登月!
  23. 美国人口流动数据剖析:年轻富有群体搬家去哪儿了?
  24. 拆解:太精致啦!到底是苹果M4 Mac mini牛?还是华强北更牛?
  25. 人身安全“没保障”的原因?赴美留学的趋势遇冷
  26. 美国房市降温?待售房屋开始下调要价!
  27. 深入剖析:性在人类交往中的作用
  28. 号外:伊隆·马斯克的第11个孩子出生了
  29. 漂亮国再次遣返中国移民,这批有131人!
  30. 移民故事:入赘美国的河南保安【蔡小华】现状
  31. 加州公司的市值盘点 top10
  32. 关于EVUS的填写心得和常见问题
  33. 宁愿混居美国,华人姑娘袒露了不愿回国的真相!
  34. 悲惨回顾:美国历史上的十大枪击案盘点
  35. 五星红旗在月球背面升起!阿波罗登月遭遇再度质疑?
  36. 关于美国的社保(全面解读)

美国动态 美果转盘 美果商店

Your IP: 3.149.235.66, 2024-11-26 09:40:26

Processed in 0.60717 second(s)

头像

用户名:

粉丝数:

签名:

资料 关注 好友 消息
已有0次打赏
(3) 分享
分享
取消